Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection

Nanotechnology. 2011 Apr 1;22(13):135503. doi: 10.1088/0957-4484/22/13/135503. Epub 2011 Feb 22.

Abstract

Using a silicon nanowire field-effect transistor (SiNW-FET) for biomolecule detections, we selected 3-(mercaptopropyl)trimethoxysilane (MPTMS), N-[6-(biotinamido)hexyl]-3(')-(2(')-pyridyldithio) propionamide (biotin-HPDP), and avidin, respectively, as the designated linker, receptor, and target molecules as a study model, where the biotin molecules were modified on the SiNW-FET to act as a receptor for avidin. We applied high-resolution scanning Kelvin probe force microscopy (KPFM) to detect the modified/bound biomolecules by measuring the induced change of the surface potential (ΔΦ(s)) on the SiNW-FET under ambient conditions. After biotin-immobilization and avidin-binding, the ΔΦ(s) on the SiNW-FET characterized by KPFM was demonstrated to correlate to the conductance change inside the SiNW-FET acquired in aqueous solution. The ΔΦ(s) values on the SiNW-FET caused by the same biotin-immobilization and avidin-binding were also measured from drain current versus gate voltage curves (I(d)-V(g)) in both aqueous condition and dried state. For comparison, we also study the ΔΦ(s) values on a Si wafer caused by the same biotin-immobilization and avidin-binding through KPFM and ζ potential measurements. This study has demonstrated that the surface potential measurement on a SiNW-FET by KPFM can be applied as a diagnostic tool that complements the electrical detection with a SiNW-FET sensor. Although the KPFM experiments were carried out under ambient conditions, the measured surface properties of a SiNW-FET are qualitatively valid compared with those obtained by other biosensory techniques performed in liquid environment.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Avidin / chemistry
  • Avidin / metabolism*
  • Biosensing Techniques / instrumentation*
  • Biosensing Techniques / methods
  • Biotin / chemistry
  • Biotin / metabolism*
  • Electric Conductivity
  • Equipment Design
  • Immobilized Proteins / chemistry
  • Immobilized Proteins / metabolism
  • Nanowires / chemistry*
  • Nanowires / ultrastructure
  • Protein Binding
  • Silicon / chemistry*
  • Surface Properties
  • Transistors, Electronic*

Substances

  • Immobilized Proteins
  • Avidin
  • Biotin
  • Silicon