Cervical spondylotic myelopathy due to ossification of the posterior longitudinal ligament (OPLL) is a common neurosurgical disease that carries high morbidity. OPLL and other degenerative processes cause narrowing of the central canal, with subsequent spinal cord injury. Repeated minor trauma and vascular aberrations have been purported to underlie cervical spondylotic myelopathy, although the exact pathophysiological mechanism is unclear. Regardless, detection of early axonal damage may allow more timely surgical intervention and prediction of functional outcome. Diffusion tensor (DT) imaging of the cervical spine is a novel technique with improved sensitivity compared with conventional anatomical MR imaging that is currently available on most clinical scanners. This review describes the theoretical basis, application, and analysis of DT imaging as it pertains to neurosurgery. Particular emphasis is placed on OPLL.