Bone augmentation procedures rely on osteogenic/osteoconductive properties of bone graft material (BGM). A further improvement is represented by use of autologous bone marrow stromal cells (BMSC), expanded in vitro and seeded on BGM before implantation in the bone defect. The effect of different BGMs on BMSC osteogenic differentiation was evaluated. BMSC were cultured in vitro in the presence of different BGM (natural, synthetic, and mixed origins). Cellular morphology was analyzed with scanning electron microscopy. The capability of BMSC to differentiate was determined in vitro by alkaline phosphatase gene expression and enzyme activity at different time points (7, 14, and 28 days) and in vivo by ectopic bone formation of implanted tissue constructs in an immunodeficient murine model. BGM supports the cell adhesion and osteogenic differentiation of BMSC developing a useful tool in the bone tissue engineering.