New insights into the structure and reduction of graphite oxide

Nat Chem. 2009 Aug;1(5):403-8. doi: 10.1038/nchem.281. Epub 2009 Jul 5.

Abstract

Graphite oxide is one of the main precursors of graphene-based materials, which are highly promising for various technological applications because of their unusual electronic properties. Although epoxy and hydroxyl groups are widely accepted as its main functionalities, the complete structure of graphite oxide has remained elusive. By interpreting spectroscopic data in the context of the major functional groups believed to be present in graphite oxide, we now show evidence for the presence of five- and six-membered-ring lactols. On the basis of this chemical composition, we devised a complete reduction process through chemical conversion by sodium borohydride and sulfuric acid treatment, followed by thermal annealing. Only small amounts of impurities are present in the final product (less than 0.5 wt% of sulfur and nitrogen, compared with about 3 wt% with other chemical reductions). This method is particularly effective in the restoration of the π-conjugated structure, and leads to highly soluble and conductive graphene materials.

Publication types

  • Research Support, Non-U.S. Gov't