In this paper, we report direct patterning of metal nanostructures using an embossed solid electrochemical stamp. Microforming of solid superionic stamps using Si templates--analogous to polymer patterning in nano-imprint lithography--is explored. Silver sulfide (Ag₂S)--a superionic conductor with excellent microforming properties--is investigated as a candidate material. Important parameters of the superionic stamp, including mechanical behavior, material flow during forming and feature recovery after embossing, are studied. Excellent feature transferability during embossing as well as etching is observed. To illustrate the capability of this approach silver nano-antennas with gaps < 10 nm were successfully fabricated. The possibility for large area patterning with stamp diameters > 6 mm is also demonstrated. Embossing-based metal patterning allows fabrication beyond two-dimensional nanofabrication and several patterning schemes are reported.