The Bcl-2 homology domain 3 (BH3) mimetic ABT-737 reveals the dynamic regulation of bad, a proapoptotic protein of the Bcl-2 family, by Bcl-xL

Mol Pharmacol. 2011 Jun;79(6):997-1004. doi: 10.1124/mol.110.070565. Epub 2011 Mar 10.

Abstract

The proteins of the B-cell lymphoma 2 (Bcl-2) family are important regulators of apoptosis under normal and pathological conditions. Chemical compounds that block the antiapoptotic proteins of this family have been introduced, such as 4-[4-[(4'-Chloro[1,1'-biphenyl]-2-yl)methyl]-1-piperazinyl]-N-[[4-[[(1R)-3-(dimethylamino)-1-[(phenylthio)methyl]propyl]amino]-3-nitrophenyl]sulfonyl]benzamide (ABT-737), a BH3-mimetic that neutralizes Bcl-2 and Bcl-xL. In this study, we used ABT-737 to explore the dynamic regulation of Bcl-2 proteins in living cells of different origins. Using ABT-737 as well as RNA interference or the application of growth factors, we examined the impact of the functional availability of the antiapoptotic proteins Bcl-2 and Bcl-2-extra large (Bcl-xL) on the Bcl-2 network. We report that ABT-737 increases the expression of Bcl-2-associated death promoter (Bad), a proapoptotic partner of the proteins Bcl-2 and Bcl-xL. Our observations indicate that Bad overexpression induced by ABT-737 results from the control of its normally rapid protein turnover, leading to the stabilization of this protein. We demonstrate the relevance of Bad post-translational regulation by Bcl-xL to the physiological setting using RNA interference against Bcl-xL as well as the application of epidermal growth factor, a growth factor that promotes the dissociation of Bad from Bcl-xL. Our results highlight a new facet of the mode of action of the antiapoptotic proteins Bcl-2 and Bcl-xL consisting of the regulation of the stability of the protein Bad. Finally, our results shed light on the mode of action of ABT-737, currently the best characterized inhibitor of the antiapoptotic proteins of the Bcl-2 family, and bear important implications regarding its use as an anticancer drug.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biphenyl Compounds / pharmacology*
  • Blotting, Western
  • Cell Line
  • Cytosol / metabolism
  • Humans
  • Molecular Mimicry
  • Nitrophenols / pharmacology*
  • Piperazines / pharmacology
  • Polymerase Chain Reaction
  • Proto-Oncogene Proteins c-bcl-2 / chemistry
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*
  • RNA Interference
  • Sulfonamides / pharmacology*

Substances

  • ABT-737
  • Biphenyl Compounds
  • Nitrophenols
  • Piperazines
  • Proto-Oncogene Proteins c-bcl-2
  • Sulfonamides