The head of the myosin molecule (i.e., subfragment 1 with a heavy chain of 95 kDa) is usually obtained by chymotryptic cleavage in the presence of a divalent cation chelator. In the present work, we used another specific proteolytic enzyme, thrombin, to produce a limited cut within the myosin molecule, resulting in a new species of N-terminal fragment. Treatment of skeletal muscle myosin yielded a 97-kDa split heavy chain associated with intact light chains, corresponding to a single cut. The ATPase activities of this new S-1 derivative were slightly affected by the breakdown. It recognized actin in an ATP-dependent manner, as expected, with an affinity 2-5 times higher than that of the usual chymotryptic S-1 preparation but with a very different electron microscopic pattern. Functional differences are noted, and we involve them more precisely in relation to possible structural aspects of the additional C-terminal segment extending the usual S-1 heavy chain from 95 to 97 kDa.