Photofrin II is the hematoporphyrin-derivative fraction enriched in covalently-linked oligomers, characterized by a high degree of folding. Interaction with hydrophobic structures, such as biomolecules and cell structures, results in a modification of the equilibria among the different species, as a consequence of an unfolding effect exerted towards the electrostatic aggregates. The effect of esterase activity was evaluated, taking into account the nature suggested for the covalent linkage of the oligomers (ether and/or ester). The study was performed in Photofrin II aqueous solution by means of absorption and fluorescence spectral analysis. The results showed that the esterase is active only towards the unfold oligomers: that is, in Photofrin II solution supplemented with albumin. In these conditions, spectral analysis revealed the presence of a monomerization process, which is clearly evident during the first four hours of incubation. The monomerization effect induced by the enzyme was also proven by both equilibrium-dialysis measurements and zinc ion complexation. Zinc ion complexes with high affinity for monomeric species, giving rise to a very distinct emission band at 580 nm. The amount of ester linkage shown in the oligomers through enzyme hydrolysis appeared to be less than might have been expected, owing to the inhibiting effect of the monomer produced on the enzyme. The results are a step toward clarifying the intracellular and intratissue turnover of the drug observed after administration.