Diatoms respire nitrate to survive dark and anoxic conditions

Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5649-54. doi: 10.1073/pnas.1015744108. Epub 2011 Mar 14.

Abstract

Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO(3)(-) intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11-274 mM NO(3)(-) in their cells survived for 6-28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84-87% of its intracellular NO(3)(-) pool within 1 d. A stable-isotope labeling experiment proved that (15)NO(3)(-) consumption was accompanied by the production and release of (15)NH(4)(+), indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO(3)(-) in sediment layers without O(2) and NO(3)(-). The rapid depletion of the intracellular NO(3)(-) storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH(4)(+) source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Biological / physiology*
  • Ammonia / metabolism
  • Anaerobiosis
  • Darkness*
  • Diatoms / metabolism
  • Diatoms / physiology*
  • Isotope Labeling
  • Nitrates / metabolism*
  • Nitrogen Isotopes / metabolism
  • Oxidation-Reduction
  • Survival Analysis

Substances

  • Nitrates
  • Nitrogen Isotopes
  • Ammonia