Donor lymphocyte infusion (DLI), whereby donor mononuclear cells are infused into patients, is one of the few effective immunotherapeutic strategies that generate long-lasting tumor remissions. We previously demonstrated that chronic myelogenous leukemia (CML) patients treated with DLI develop high-titer plasma antibodies specific for CML-associated antigens, the majority of which have been reported to bind nucleic acids These observations led us to predict that circulating antibody-antigen complexes in DLI-responsive patients carry nucleic acids that can engage innate immune sensors. Consistent with this, we report here that post-DLI plasma from 5 CML patients that responded to DLI treatment induced massive upregulation of MIP-1α, IP-10, and IFN-α in normal blood mononuclear cells. Importantly, this was not observed with plasma obtained before DLI and from DLI nonresponders and imatinib-treated patients. This endogenous immunostimulatory activity required nucleic acid and protein for its adjuvant effect and activated antigen-presenting cells through the RNA and DNA sensors TLR8 and TLR9. Presence of the immunoglobulin Fc receptor CD32 enhanced cellular responses, suggesting that immunoglobulins associate with this activity. Finally, a TLR-induced expression signature was detectable in post-DLI but not pre-DLI blood, consistent with an active circulating TLR8/9-stimulating factor. We have therefore demonstrated that effective tumor immunity correlates with the presence of endogenous nucleic acid-immunoglobulin complexes in patient plasma, thus providing a putative mechanism for the induction of potent antigen-specific immunity against malignant cells.