Purpose: To investigate the effect of atropine on the development of spectacle lens induced myopia in the mouse and to determine if the level of mRNAs for the muscarinic receptor subtypes (M(1) - M(5)) is affected by atropine treatment.
Methods: Experimental myopia was developed in Balb/CJ (BJ) mice by placing -10 diopter spectacle lens on post-natal day 10 over the right eyes of 150 mice (n=10 in each group, 5 repetitions) for six weeks. After 2 weeks of lens wearing, the atropine group received a daily sub-conjunctival injection (10 µl) of 1% atropine sulfate and the saline group received daily 10 µl of 0.9% normal saline for 4 weeks. In addition, myopia was developed in C57BL/6 (B6) mice by placing -10 D spectacle lens on post-natal day 10 over the right eyes of 60 mice (n=10 in each group, 2 repetitions) for six weeks with and without atropine treatment. Refraction and axial length was measured at 2, 4, and 6 weeks after treatments. RT-PCR and northern blots were performed using specific primers for M(1)-M(5), and products sequenced. Real-time PCR was used to quantify message levels.
Results: Axial length of myopic eyes was 111% of their controls without atropine treatment and 103% of controls after atropine (p<0.01). Refraction shifted from myopic to emmetropic after atropine was administered in both pigmented and non-pigmented eyes. Corneal thickness, anterior chamber depth, corneal curvature and retinal thickness were not significantly different with and without atropine treatment (p=0.14). The lens thickness and vitreous chamber depth were significantly reduced after receiving atropine (p<0.05). Real-time PCR showed that message levels for M(1), M(3), and M(4) were upregulated in myopic sclera after atropine treatment, but M(2) and M(5) showed little change.
Conclusions: The present study shows that 1% atropine reduces myopia progression in both pigmented and non-pigmented mice eyes. Axial length and vitreous chamber depth appear to be the main morphological parameters related to myopia. The results suggest that atropine may act on one or more muscarinic receptors to differentially regulate expression levels of specific receptors.