To study equilibrium changes in composition, valence, and electronic structure near the surface and into the bulk, we demonstrate the use of a new approach, total-reflection inelastic x-ray scattering, as a sub-keV spectroscopy capable of depth profiling chemical changes in thin films with nanometer resolution. By comparing data acquired under total x-ray reflection and penetrating conditions, we are able to separate the O K-edge spectra from a 10 nm La0.6Sr0.4CoO3 thin film from that of the underlying SrTiO3 substrate. With a smaller wavelength probe than comparable soft x-ray absorption measurements, we also describe the ability to easily access dipole-forbidden final states, using the dramatic evolution of the La N4,5 edge with momentum transfer as an example.