Quantitative sodium MRI requires accurate knowledge of factors affecting the sodium signal. One important determinant of sodium signal level is the transmit B(1) field strength. However, the low signal-to-noise ratio typical of sodium MRI makes accurate B(1) mapping in reasonable scan times challenging. A new phase-sensitive B(1) mapping technique has recently been shown to work better than the widely used dual-angle method in low-signal-to-noise ratio situations and over a broader range of flip angles. In this work, the phase-sensitive B(1) mapping technique is applied to sodium, and its performance compared to the dual-angle method through both simulation and phantom studies. The phase-sensitive method is shown to yield higher quality B(1) maps at low signal-to-noise ratio and greater consistency of measurement than the dual-angle method. An in vivo sodium B(1) map of the human breast is also shown, demonstrating the phase-sensitive method's feasibility for human studies.
Copyright © 2010 Wiley-Liss, Inc.