In recent years, several novel halogenated liquids with characteristics of ionic liquids (ILs) were reported. To explore their performance in the absorption of CO(2), in this work, quantum chemical calculations at DFT level have been carried out to investigate halogen bonding interactions between experimentally available brominated ion pairs and CO(2) molecules. It is shown that, as compared to B3LYP, the functional PBE yields geometrical and energetic data more close to those of MP2 for cation-CO(2) systems. The cation of brominated ILs under study can interact with CO(2) molecules through Br···O interactions, possibly making an important impact on the physical solubility of CO(2) in brominated ILs. The optimized geometries of the complexes of the ion pair with CO(2) molecules are quite similar to those of the corresponding complexes of the cation, especially for the essentially linear C-Br···O contacts. However, much weaker halogen bonds are predicted in the former systems, as indicated by the longer intermolecular distances and the smaller interaction energies. Charges derived from NBO analysis reveal the origin of the different optimized conformations and halogen bonding interactions for the CO(2) molecule. Based on the electrostatic potential results, the substitution of hydrogen atoms with fluorine atoms constituting the cation is then applied to enhance halogen bond strength. The QTAIM analysis further validates the existence of halogen bonding interaction in all complexes. The topological properties at the halogen bond critical points indicate that the Br···O interactions in the complexes are basically electrostatic in nature and belong to conventional weak halogen bonds. This study would be helpful for designing new and effective ILs for CO(2) physical absorption.