Purpose: The purpose of this study was to evaluate the effect on freedom from biochemical failure (bNED) or disease-free survival (DFS) by adding hormone therapy (HT) to dose-escalated radiation therapy (HDRT).
Methods and materials: We used 883 analyzable prostate cancer patients who enrolled on Radiation Therapy Oncology Group (RTOG) 94-06, a Phase I/II dose escalation trial, and whose mean planning target volume dose exceeded 73.8 Gy (mean, 78.5 Gy; maximum, 84.3 Gy). We defined biochemical failure according to the Phoenix definition.
Results: A total of 259 men started HT 2 to 3 months before HDRT, but not longer than 6 months, and 66 men with high-risk prostate cancer received HT for a longer duration. At 5 years, the biochemical failure rates after HDRT alone were 12%, 18%, and 29% for low-, intermediate-, and high-risk patients, respectively (p < 0.0001). Cox proportional hazards regression analysis adjusted for covariates revealed that pretreatment PSA level was a significant factor, whereas risk group, Gleason score, T-stage, and age were not. When the patients were stratified by risk groups, the Cox proportion hazards regression model (after adjusting for pretreatment PSA, biopsy Gleason score, and T stage) did not reveal a significant effect on bNED or DFS by adding HT to HDRT CONCLUSION: The addition of HT did not significantly improve bNED survival or DFS in all prostate cancer patients receiving HDRT, but did approach significance in high-risk patient subgroup. The result of this study is hypothesis generating and requires testing in a prospective randomized trial.
Copyright © 2011 Elsevier Inc. All rights reserved.