Per- and polyfluorinated compounds (PFCs) have been found to be ubiquitously distributed in human populations, however the sources of human exposure are not fully characterized. A wide range of PFCs were determined in paired samples of indoor air and dust from 41 Norwegian households. Up to 18 ionic and 9 neutral PFCs were detected. The concentrations found are comparable to or lower than what has previously been reported in North America, Europe, and Asia. The highest median concentrations in dust were observed for perfluorohexanoic acid (28 ng/g), perfluorononanoic acid (23 ng/g), perfluorododecanoic acid (19 ng/g), and perfluorooctanoic acid (18 ng/g). However, perfluoroalkyl sulfonic acids (PFSAs) were also frequently detected. Fluortelomer alcohols were the most prominent compounds found in indoor air, with median concentrations for 8:2 fluortelomer alcohol, 10:2 fluortelomer alcohol, and 6:2 fluortelomer alcohol of 5173, 2822, and 933 pg/m(3) air, respectively. All perfluoroalkyl sulfonamides and sulfonamidoethanols (FOSA/FOSEs) were detected in more than 40% of the air samples. For the first time, significant positive correlations (p < 0.05) between PFSAs in house dust and FOSA/FOSEs in the indoor air have been shown, supporting the hypothesis that FOSA/FOSEs may be transformed to PFSAs. Further, we found the age of the residence to be a predictor of PFC concentrations in both indoor air and house dust. These results are important for estimating the exposure to PFCs from the indoor environment and for characterization of exposure pathways.