Hibernating above the permafrost: effects of ambient temperature and season on expression of metabolic genes in liver and brown adipose tissue of arctic ground squirrels

J Exp Biol. 2011 Apr 15;214(Pt 8):1300-6. doi: 10.1242/jeb.052159.

Abstract

Hibernating arctic ground squirrels (Urocitellus parryii), overwintering in frozen soils, maintain large gradients between ambient temperature (T(a)) and body temperature (T(b)) by substantially increasing metabolic rate during torpor while maintaining a subzero T(b). We used quantitative reverse-transcription PCR (qRT-PCR) to determine how the expression of 56 metabolic genes was affected by season (active in summer vs hibernating), metabolic load during torpor (imposed by differences in T(a): +2 vs -10°C) and hibernation state (torpid vs after arousal). Compared with active ground squirrels sampled in summer, liver from hibernators showed increased expression of genes associated with fatty acid catabolism (CPT1A, FABP1 and ACAT1), ketogenesis (HMGCS2) and gluconeogenesis (PCK1) and decreased expression of genes associated with fatty acid synthesis (ACACB, SCD and ELOVL6), amino acid metabolism, the urea cycle (PAH, BCKDHA and OTC), glycolysis (PDK1 and PFKM) and lipid metabolism (ACAT2). Stage of hibernation (torpid vs aroused) had a much smaller effect, with only one gene associated with glycogen synthesis (GSY1) in liver showing consistent differences in expression levels between temperature treatments. Despite the more than eightfold increase in energetic demand associated with defending T(b) during torpor at a T(a) of -10 vs +2°C, transcript levels in liver and brown adipose tissue differed little. Our results are inconsistent with a hypothesized switch to use of non-lipid fuels when ambient temperatures drop below freezing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adipose Tissue, Brown / physiology*
  • Animals
  • Arctic Regions
  • Body Temperature
  • Energy Metabolism / genetics*
  • Gene Expression Regulation
  • Hibernation / genetics*
  • Liver / physiology*
  • Principal Component Analysis
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sciuridae* / genetics
  • Sciuridae* / metabolism
  • Seasons*
  • Temperature*