Effects of antithrombotic drugs fondaparinux and tinzaparin on in vitro proliferation and osteogenic and chondrogenic differentiation of bone-derived mesenchymal stem cells

J Orthop Res. 2011 Sep;29(9):1327-35. doi: 10.1002/jor.21405. Epub 2011 Mar 22.

Abstract

An unexpected side effect of some classes of anticoagulants has been osteoporosis which may be, at least in part, related to deranged mesenchymal stem cell (MSC) function. The aim of the present study was to compare the effect of fondaparinux (FDP), a novel antithrombotic with a traditional widely used low molecular weight heparin, tinzaparin (TZP) on MSC proliferation and differentiation. MSCs were isolated from trabecular bone of 14 trauma patients by a collagenase-based digestion procedure and expanded in standard conditions until passage 3. Proliferation and differentiation of MSCs to chondrocytes and osteoblasts was assessed with or without the addition of FDP and TZP using standard in vitro assays and a broad range of drug concentrations. Flow cytometry was used for MSC phenotyping. In the age studied group (17-74 years old) the MSC frequency in collagenase-released fractions was 641/10(6) cells (range 110-2,158) and their growth characteristics were ∼4 days/population doubling. Cultures had a standard MSC phenotype (CD73+, CD105+, CD146+, CD106+, and CD166+). Cell proliferation was assessed by both colony-forming unit-fibroblast (CFU-F) and colorimetric tetrazolium salt XTT assays. In both assays, MSC proliferation was inhibited by the addition of TZP, particularly at high concentrations. In contrast, FDP had no effect on MSC proliferation. Osteogenic differentiation and chondrogenic differentiation were not affected by the addition of either TZP or FDP. Whilst MSC proliferation, but not differentiation, is negatively affected by TZP, there was no evidence for adverse effects of FDP in this in vitro model system which argues well for its use in the orthopedic setting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Anticoagulants / pharmacology*
  • Cell Differentiation / drug effects
  • Cell Differentiation / physiology
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Chondrogenesis / drug effects*
  • Chondrogenesis / physiology
  • Female
  • Fibrinolytic Agents / pharmacology*
  • Fondaparinux
  • Heparin, Low-Molecular-Weight / pharmacology*
  • Humans
  • Male
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects*
  • Mesenchymal Stem Cells / metabolism
  • Middle Aged
  • Osteogenesis / drug effects*
  • Osteogenesis / physiology
  • Polysaccharides / pharmacology*
  • Tinzaparin
  • Young Adult

Substances

  • Anticoagulants
  • Fibrinolytic Agents
  • Heparin, Low-Molecular-Weight
  • Polysaccharides
  • Tinzaparin
  • Fondaparinux