CONVERGENCE AND PREDICTION OF PRINCIPAL COMPONENT SCORES IN HIGH-DIMENSIONAL SETTINGS

Ann Stat. 2010 Jan 1;38(6):3605-3629. doi: 10.1214/10-AOS821.

Abstract

A number of settings arise in which it is of interest to predict Principal Component (PC) scores for new observations using data from an initial sample. In this paper, we demonstrate that naive approaches to PC score prediction can be substantially biased towards 0 in the analysis of large matrices. This phenomenon is largely related to known inconsistency results for sample eigenvalues and eigenvectors as both dimensions of the matrix increase. For the spiked eigenvalue model for random matrices, we expand the generality of these results, and propose bias-adjusted PC score prediction. In addition, we compute the asymptotic correlation coefficient between PC scores from sample and population eigenvectors. Simulation and real data examples from the genetics literature show the improved bias and numerical properties of our estimators.