Characterization of low bone mass in young patients with thalassemia by DXA, pQCT and markers of bone turnover

Bone. 2011 Jun 1;48(6):1305-12. doi: 10.1016/j.bone.2011.03.765. Epub 2011 Apr 5.

Abstract

Previous reports using dual x-ray absorptiometry (DXA) suggest that up to 70% of adults with thalassemia major (Thal) have low bone mass. However, few studies have controlled for body size and pubertal delay, variables known to affect bone mass in this population. In this study, bone mineral content and areal density (BMC, aBMD) of the spine and whole body were assessed by DXA, and volumetric BMD and cortical geometries of the distal tibia by peripheral quantitative computed tomography (pQCT) in subjects with Thal (n = 25, 11 male, 10 to 30 years) and local controls (n=34, 15 male, 7 to 30 years). Z-scores for bone outcomes were calculated from reference data from a large sample of healthy children and young adults. Fasting blood and urine were collected, pubertal status determined by self-assessment and dietary intake and physical activity assessed by written questionnaires. Subjects with Thal were similar in age, but had lower height, weight and lean mass index Z-scores (all p < 0.001) compared to controls. DXA aBMD was significantly lower in Thal compared to controls at all sites. Adult Thal subjects (> 18 years, n = 11) had lower tibial trabecular vBMD (p = 0.03), cortical area, cortical BMC, cortical thickness, periosteal circumference and section modulus Z-scores (all p < 0.01) compared to controls. Cortical area, cortical BMC, cortical thickness, and periosteal circumference Z-scores (p = 0.02) were significantly lower in young Thal (≤ 18 years, n = 14) compared to controls. In separate multivariate models, tibial cortical area, BMC, and thickness and spine aBMD and whole body BMC Z-scores remained lower in Thal compared to controls after adjustment for gender, lean mass and/or growth deficits (all p < 0.01). Tanner stage was not predictive in these models. Osteocalcin, a marker of bone formation, was significantly reduced in Thal compared to controls after adjusting for age, puberty and whole body BMC (p=0.029). In summary, we have found evidence of skeletal deficits that cannot be dismissed as an artifact of small bone size or delayed maturity alone. Given that reduced bone density and strength are associated with increased risk of fracture, therapies focused on increasing bone formation and bone size in younger patients are worthy of further evaluation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Absorptiometry, Photon
  • Adolescent
  • Adult
  • Biomarkers
  • Bone Density*
  • Bone Resorption
  • Child
  • Female
  • Humans
  • Male
  • Thalassemia / diagnostic imaging*
  • Tomography, X-Ray Computed

Substances

  • Biomarkers