There is no treatment available for vision loss associated with advanced dry age-related macular degeneration (AMD) or geographic atrophy (GA). In a pilot, proof of concept phase 2 study, we evaluated ciliary neurotrophic factor (CNTF) delivered via an intraocular encapsulated cell technology implant for the treatment of GA. We designed a multicenter, 1-y, double-masked, sham-controlled dose-ranging study. Patients with GA were randomly assigned to receive a high-or low-dose implant or sham surgery. The primary endpoint was the change in best corrected visual acuity (BCVA) at 12 mo. CNTF treatment resulted in a dose-dependent increase in retinal thickness. This change was followed by visual acuity stabilization (loss of less than 15 letters) in the high-dose group (96.3%) compared with low-dose (83.3%) and sham (75%) group. A subgroup analysis of those with baseline BCVA at 20/63 or better revealed that 100% of patients in the high-dose group lost <15 letters compared with 55.6% in the combined low-dose/sham group (P = 0.033). There was a 0.8 mean letter gain in the high-dose group compared with a 9.7 mean letter loss in the combined low-dose/sham group (P = 0.0315). Both the implant and the implant procedure were well-tolerated. These findings suggest that CNTF delivered by the encapsulated cell technology implant appears to slow the progression of vision loss in GA, especially in eyes with 20/63 or better vision at baseline.