VEGFA is considered one of the most important regulators of tumor-associated angiogenesis in cancer. In acute myeloid leukemia (AML) VEGFA is an independent prognostic factor for reduced overall and relapse-free survival. Transcriptional activation of the VEGFA promoter, a core mechanism for VEGFA regulation, has not been fully elucidated. We found a significant (P < 0.0001) inverse correlation between expression of VEGFA and AML1/RUNX1 in a large set of gene expression array data. Strikingly, highest VEGFA levels were demonstrated in AML blasts containing a t(8;21) translocation, which involves the AML1/RUNX1 protein (AML1/ETO). Overexpression of AML1/RUNX1 led to downregulation of VEGFA expression, whereas blocking of AML1/RUNX1 with siRNAs resulted in increased VEGFA expression. Cotransfection of AML1/RUNX1 and VEGFA promoter luciferase promoter constructs resulted in a decrease in VEGFA promoter activity. ChIP analysis shows a direct binding of AML1/RUNX1 to the promoter of VEGFA on three AML1/RUNX1 binding sites. Silencing of AML1/ETO caused a decrease in VEGFA mRNA expression and a decrease in secreted VEGFA protein levels in AML1/ETO-positive Kasumi-1 cells. Taken together, these data pinpoint to a model whereby in normal cells AML1/RUNX1 acts as a repressor for VEGFA, while in AML cells VEGFA expression is upregulated due to AML1/RUNX1 aberrations, for example, AML1/ETO. In conclusion, these observations give insight in the regulation of VEGFA at the mRNA level in AML.