Left ventricular hypertrophy is based on cardiac myocyte growth. The hypertrophic process can be considered heterogeneous based on whether it also includes a remodeling and accumulation of fibrillar types I and III collagens that are responsible for impaired myocardial stiffness. In the heart, the messenger RNA (mRNA) for fibrillar collagen types I and III has been detected only in cardiac fibroblasts, whereas mRNA for basement membrane collagen type IV is present in both fibroblasts and myocytes. We studied the early and long-term expression of these collagenous proteins in rat myocardium after abdominal aortic banding with renal ischemia. Complementary DNA probes for rat pro-alpha 2 (I), mouse type III and mouse type IV collagens, and chicken beta-actin were used. Northern and dot blot analysis on total RNA extracted from left ventricular tissue indicated a sixfold increase in steady-state levels of mRNA for collagen type I on day 3 of abdominal aortic banding, which had declined to control levels by day 7 where it remained rather constant at 4 and 8 weeks. Type III collagen showed a similar pattern of gene expression after banding. mRNA levels for type IV collagen, on the other hand, were elevated on day 1 after banding, returning to control at day 7 and remaining constant. Actin mRNA levels also increased on day 1 of banding, followed by a rapid return to control levels. Monospecific antibody to types I and III collagens and immunofluorescent light microscopy on frozen sections of the myocardium revealed that at 1 week after banding, the distribution and density of these collagens were similar to those of control animals.(ABSTRACT TRUNCATED AT 250 WORDS)