The ability to maintain human fungiform papillae cells in culture for multiple cell cycles would be of considerable utility for characterizing the molecular, regenerative, and functional properties of these unique sensory cells. Here we describe a method for enzymatically isolating human cells from fungiform papillae obtained by biopsy and maintaining them in culture for more than 7 passages (7 months) without loss of viability and while retaining many of the functional properties of acutely isolated taste cells. Cells in these cultures exhibited increases in intracellular calcium when stimulated with perceptually appropriate concentrations of several taste stimuli, indicating that at least some of the native signaling pathways were present. This system can provide a useful model for molecular studies of the proliferation, differentiation, and physiological function of human fungiform papillae cells.