Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration

Oecologia. 2011 Sep;167(1):265-78. doi: 10.1007/s00442-011-1975-3. Epub 2011 Apr 13.

Abstract

Moisture inputs drive soil respiration (SR) dynamics in semi-arid and arid ecosystems. However, determining the contributions of root and microbial respiration to SR, and their separate temporal responses to periodic drought and water pulses, remains poorly understood. This study was conducted in a pine forest ecosystem with a Mediterranean-type climate that receives seasonally varying precipitation inputs from both rainfall (in the winter) and fog-drip (primarily in the summer). We used automated SR measurements, radiocarbon SR source partitioning, and a water addition experiment to understand how SR, and its separate root and microbial sources, respond to seasonal and episodic changes in moisture. Seasonal changes in SR were driven by surface soil water content and large changes in root respiration contributions. Superimposed on these seasonal patterns were episodic pulses of precipitation that determined the short-term SR patterns. Warm season precipitation pulses derived from fog-drip, and rainfall following extended dry periods, stimulated the largest SR responses. Microbial respiration dominated these SR responses, increasing within hours, whereas root respiration responded more slowly over days. We conclude that root and microbial respiration sources respond differently in timing and magnitude to both seasonal and episodic moisture inputs. These findings have important implications for the mechanistic representation of SR in models and the response of dry ecosystems to changes in precipitation patterns.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • California
  • Carbon Radioisotopes / analysis
  • Cell Respiration
  • Ecosystem
  • Plant Roots / metabolism*
  • Rain*
  • Seasons*
  • Soil / chemistry*
  • Soil Microbiology*

Substances

  • Carbon Radioisotopes
  • Soil