A method to measure myocardial calcium handling in adult Drosophila

Circ Res. 2011 May 27;108(11):1306-15. doi: 10.1161/CIRCRESAHA.110.238105. Epub 2011 Apr 14.

Abstract

Rationale: Normal cardiac physiology requires highly regulated cytosolic Ca(2+) concentrations and abnormalities in Ca(2+) handling are associated with heart failure. The majority of approaches to identifying the components that regulate intracellular Ca(2+) dynamics rely on cells in culture, mouse models, and human samples. However, a genetically robust system for unbiased screens of mutations that affect Ca(2+) handling remains a challenge.

Objective: We sought to develop a new method to measure myocardial Ca(2+) cycling in adult Drosophila and determine whether cardiomyopathic fly hearts recapitulate aspects of diseased mammalian myocardium.

Methods and results: Using engineered transgenic Drosophila that have cardiac-specific expression of Ca(2+)-sensing fluorescent protein, GCaMP2, we developed methods to measure parameters associated with myocardial Ca(2+) handling. The following key observations were identified: (1) Control w(1118) Drosophila hearts have readily measureable Ca(2+)-dependent fluorescent signals that are dependent on L-type Ca(2+) channels and SR Ca(2+) stores and originate from rostral and caudal pacemakers. (2) A fly mutant, held-up(2) (hdp(2)), that has a point mutation in troponin I and has a dilated cardiomyopathic phenotype demonstrates abnormalities in myocardial Ca(2+) handling that include increases in the duration of the 50% rise in intensity to peak intensity, the half-time of fluorescence decline from peak, the full duration at half-maximal intensity, and decreases in the linear slope of decay from 80% to 20% intensity decay. (3) Hearts from hdp(2) mutants had reductions in caffeine-induced Ca(2+) increases and reductions in ryanodine receptor (RyR) without changes in L-type Ca(2+) channel transcripts in comparison with w(1118).

Conclusions: Our results show that the cardiac-specific expression of GCaMP2 provides a means of characterizing propagating Ca(2+) transients in adult fly hearts. Moreover, the adult fruit fly heart recapitulates several aspects of Ca(2+) regulation observed in mammalian myocardium. A mutation in Drosophila that causes an enlarged cardiac chamber and impaired contractile function is associated with abnormalities in the cytosolic Ca(2+) transient as well as changes in transcript levels of proteins associated with Ca(2+) handling. This new methodology has the potential to permit an examination of evolutionarily conserved myocardial Ca(2+)-handing mechanisms by applying the vast resources available in the fly genomics community to conduct genetic screens to identify new genes involved in generated Ca(2+) transients and arrhythmias.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Animals, Genetically Modified
  • Calcium Channels, L-Type / genetics
  • Calcium Channels, L-Type / metabolism
  • Calcium Signaling / physiology*
  • Cardiomyopathies* / genetics
  • Cardiomyopathies* / metabolism
  • Cardiomyopathies* / physiopathology
  • Cytosol / metabolism
  • Disease Models, Animal*
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster*
  • Female
  • Gene Expression / physiology
  • Genes, Reporter
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Humans
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Myocardial Contraction / physiology*
  • Myocardium / metabolism

Substances

  • Calcium Channels, L-Type
  • Drosophila Proteins
  • Membrane Proteins
  • tinc protein, Drosophila
  • Green Fluorescent Proteins