Large portions of the genome undergo alternative pre-mRNA splicing in often intricate patterns. Alternative splicing regulation requires extensive control mechanisms since errors can have deleterious consequences and may lead to developmental defects and disease. Recent work has identified a complex network of regulatory RNA elements which guide splicing decisions. In addition, the discovery that transcription and splicing are intimately coupled has opened up new directions into alternative splicing regulation. Work at the interface of chromatin and RNA biology has revealed unexpected molecular links between histone modifications, the transcription machinery, and non-coding RNAs (ncRNAs) in the determination of alternative splicing patterns.
Copyright © 2011 Elsevier Ltd. All rights reserved.