Conventional methods for radiolabelling biomolecules such as proteins and peptides with fluorine-18 for PET imaging rely on carbon-fluorine bond formation and are complex and inefficient. Several non-carbon elements form strong bonds (i.e. with high bond enthalpy) with fluorine, but with lower activation energy for their formation compared to carbon-fluorine bonds, whilst preserving a relatively high kinetic stability. In particular, by incorporating boron-, aluminium- and silicon-containing prosthetic groups into biomolecules, promising results have recently been achieved in the radiolabelling with F-18-fluoride under mild aqueous conditions, affording a level of convenience, efficiency and specific activity potentially superior to those offered by conventional C-F bond formation methods. The promise already shown by these early studies heralds a new branch of bioconjugate radiochemistry involving a wider range of "fluoridephilic" elements for synthesis of PET molecular imaging agents.