Regular acyclic and macrocyclic [AB] oligomers by formation of push-pull chromophores in the chain-growth step

Chemistry. 2011 May 23;17(22):6088-97. doi: 10.1002/chem.201003672. Epub 2011 Apr 18.

Abstract

The substrate scope of the [2+2] cycloaddition-cycloreversion (CA-CR) reaction between electron-deficient (2,2-dicyanovinyl)benzene (DCVB) or (1,2,2-tricyanovinyl)benzene (TCVB) derivatives and N,N-dimethylanilino (DMA)-substituted acetylenes was investigated. The structural features of the cyanobutadiene products of these transformations were examined and the rates of selected CA-CR reactions were measured. Rate constants for reactions utilizing pentafluorinated TCVB and DCVB were found to be one to two orders of magnitude larger than those for the unsubstituted analogues. Multiple, consecutive CA-CR reactions were performed with substrates incorporating two reactive 2,2-cyanovinyl or 4-ethynylanilino sites. 1,4-Bis(2,2-dicyanovinyl)-2,3,5,6-tetrafluorobenzene and 1,4-bis[(4'-dihexylamino)phenylethynyl]benzene were selected as suitably reactive monomers for the synthesis of regular [AB] oligomers wherein the push-pull chromophores were formed in the chain-growth step. Oligomers of two types were isolated: macrocyclic [AB](n) and open-chain B[AB](n) oligomers, with n≤4.