Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells

Prog Mol Biol Transl Sci. 2011:101:311-33. doi: 10.1016/B978-0-12-387685-0.00009-3.

Abstract

Three active DNA (cytosine-5) methyltransferases (DNMTs) have been identified in mammalian cells, Dnmt1, Dnmt3a, and Dnmt3b. DNMT1 is primarily a maintenance methyltransferase, as it prefers to methylate hemimethylated DNA during DNA replication and in vitro. DNMT3A and DNMT3B are de novo methyltransferases and show similar activity on unmethylated and hemimethylated DNA. DNMT3L, which lacks the catalytic domain, binds to DNMT3A and DNMT3B variants and facilitates their chromatin targeting, presumably for de novo methylation. There are several mechanisms by which mammalian cells regulate DNMT levels, including varied transcriptional activation of the respective genes and posttranslational modifications of the enzymes that can affect catalytic activity, targeting, and enzyme degradation. In addition, binding of miRNAs or RNA-binding proteins can also alter the expression of DNMTs. These regulatory processes can be disrupted in disease or by environmental factors, resulting in altered DNMT expression and aberrant DNA methylation patterns.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Cycle
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA (Cytosine-5-)-Methyltransferases / metabolism*
  • Gene Expression Regulation, Enzymologic*
  • Humans
  • Protein Processing, Post-Translational

Substances

  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases
  • DNMT1 protein, human