Antioxidants in respiratory mucus protect the underlying airway epithelium from damage by ozone (O(3)), a common outdoor air pollutant. To understand O(3)-antioxidant interactions and the variation of these interactions among individuals, in vitro assays are needed to measure the total antioxidant capacity of airway lavage fluid, a convenient source of (diluted) mucous samples. Here, we compare the oxygen radical absorbance capacity (ORAC), a general method that uses peroxyl radicals as a reactive substance, to the recently developed ozone specific antioxidant capacity (OZAC), a procedure that directly employs O(3). For prepared model mucous antioxidant solutions containing uric acid, ascorbic acid or glutathione, the ORAC and OZAC methods yielded comparable antioxidant capacities. The addition of EDTA or DETAPAC, necessary to prevent auto-oxidation of test solutions during the ORAC assay, unpredictably altered ORAC measurements. EDTA did not have a significant effect on OZAC measurements in either prepared uric acid or ascorbic acid solutions. When assessing antioxidant capacities of nasal lavage samples, the ORAC and OZAC assays were no longer comparable. Because the OZAC of nasal lavage samples was positively related to measured uric acid concentrations whereas the ORAC data were not, the OZAC method appears to provide more realistic mucous antioxidant capacities than the ORAC method.
Copyright © 2011 Elsevier Ltd. All rights reserved.