Improved approaches and methodologies are needed to conduct comparative effectiveness research (CER) in oncology. While cancer therapies continue to emerge at a rapid pace, the review, synthesis, and dissemination of evidence-based interventions across clinical trials lag in comparison. Rigorous and systematic testing of competing therapies has been clouded by age-old problems: poor patient adherence, inability to objectively measure the environmental influences on health, lack of knowledge about patients' lifestyle behaviors that may affect cancer's progression and recurrence, and limited ability to compile and interpret the wide range of variables that must be considered in the cancer treatment. This lack of data integration limits the potential for patients and clinicians to engage in fully informed decision-making regarding cancer prevention, treatment, and survivorship care, and the translation of research results into mainstream medical care. Particularly important, as noted in a 2009 report on CER to the President and Congress, the limited focus on health behavior-change interventions was a major hindrance in this research landscape (DHHS 2009). This paper describes an initiative to improve CER for cancer by addressing several of these limitations. The Cyberinfrastructure for Comparative Effectiveness Research (CYCORE) project, informed by the National Science Foundation's 2007 report "Cyberinfrastructure Vision for 21(st) Century Discovery" has, as its central aim, the creation of a prototype for a user-friendly, open-source cyberinfrastructure (CI) that supports acquisition, storage, visualization, analysis, and sharing of data important for cancer-related CER. Although still under development, the process of gathering requirements for CYCORE has revealed new ways in which CI design can significantly improve the collection and analysis of a wide variety of data types, and has resulted in new and important partnerships among cancer researchers engaged in advancing health-related CI.