Neuronal cell death in neonatal hypoxia-ischemia

Ann Neurol. 2011 May;69(5):743-58. doi: 10.1002/ana.22419.

Abstract

Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of mortality and morbidity in infants and young children. Therapeutic opportunities are very limited for neonatal and pediatric HIE. Specific neural systems and populations of cells are selectively vulnerable in HIE; however, the mechanisms of degeneration are unresolved. These mechanisms involve oxidative stress, excitotoxicity, inflammation, and the activation of several different cell death pathways. Decades ago the structural and mechanistic basis of the cellular degeneration in HIE was thought to be necrosis. Subsequently, largely due to advances in cell biology and to experimental animal studies, emphasis has been switched to apoptosis or autophagy mediated by programmed cell death (PCD) mechanisms as important forms of degeneration in HIE. We have conceptualized based on morphological and biochemical data that this degeneration is better classified according to an apoptosis-necrosis cell death continuum and that programmed cell necrosis has prominent contribution in the neurodegeneration of HIE in animal models. It is likely that neonatal HIE evolves through many cell death chreodes influenced by the dynamic injury landscape. The relevant injury mechanisms remain to be determined in human neonatal HIE, though preliminary work suggests a complexity in the cell death mechanisms greater than that anticipated from experimental animal models. The accurate identification of the various cell death chreodes and their mechanisms unfolding within the immature brain matrix could provide fresh insight for developing meaningful therapies for neonatal and pediatric HIE.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Autophagy
  • Caspases / metabolism
  • Cell Death / physiology
  • Humans
  • Hypoxia-Ischemia, Brain / metabolism
  • Hypoxia-Ischemia, Brain / pathology*
  • Hypoxia-Ischemia, Brain / physiopathology*
  • Infant
  • Membrane Proteins / metabolism
  • Models, Biological
  • Necrosis
  • Neurodegenerative Diseases / metabolism
  • Neurodegenerative Diseases / pathology
  • Neurodegenerative Diseases / physiopathology
  • Neurons / physiology*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Signal Transduction / physiology

Substances

  • Membrane Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • Caspases