Cocaine self-administration alters brain dopaminergic and serotonergic function primarily in mesolimbic and prefrontal brain regions whereas 3,4-methylenedioxymethamphetamine (MDMA) self-administration predominately alters brain serotonergic function in a more widespread distribution across cortical regions. We previously reported that, compared to drug-naïve rhesus monkeys, self-administration of cocaine but not MDMA was associated with increased serotonin transporter (SERT) availability in two mesolimbic regions, the caudate nucleus and putamen, as measured by positron emission tomography (PET) using the SERT-specific ligand [(11)C]-3-amino-4(2-dimethylamino-methyl-phenylsulfanyl)-benzonitrile ([(11)C]DASB). The goal of the present study was to extend this comparison between cocaine and MDMA self-administration to SERT availability in cortical regions, which have been shown previously to be affected in human drug abusers and are associated with executive function. PET studies using [(11)C]DASB were conducted in adult male rhesus monkeys with a history of cocaine (mean intake = 742.6 mg/kg) or MDMA (mean intake = 121.0 mg/kg) self-administration, and drug-naïve controls (n = 4/group). Regions of interest were drawn for several cortical (prefrontal, temporal, parietal, occipital and midcingulate) and subcortical (thalamus, amygdala and hippocampus) areas. Cortical SERT availability was significantly higher in monkeys with a cocaine self-administration history compared to controls whereas MDMA self-administration resulted in lower levels of SERT availability. These data extend our previous findings indicating that cocaine and MDMA self-administration differentially alter SERT availability in subcortical and cortical regions, which may have implications for development of treatment drugs.
Copyright © 2011 Elsevier Ltd. All rights reserved.