ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells

J Biol Chem. 2011 Jun 17;286(24):21239-53. doi: 10.1074/jbc.M111.240267. Epub 2011 Apr 27.

Abstract

Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o- WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biotinylation
  • Cell Membrane / metabolism*
  • Cystic Fibrosis / metabolism*
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Electrophysiology / methods
  • Endoplasmic Reticulum / metabolism*
  • Epithelial Cells / metabolism*
  • Heat-Shock Proteins / metabolism*
  • Humans
  • Ions / chemistry
  • Oocytes / metabolism
  • Phenylbutyrates / pharmacology
  • Protein Transport
  • Xenopus

Substances

  • ERP29 protein, human
  • Heat-Shock Proteins
  • Ions
  • Phenylbutyrates
  • cystic fibrosis transmembrane conductance regulator delta F508
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • 4-phenylbutyric acid