In the late 1970s, Wally Welker and his colleagues published a series of papers describing the first high-resolution physiological maps of tactile mossy fiber projections to the granule cell layer of the rat. Over the subsequent decade, his laboratory continued to explore the implications of these results for cerebellar connectivity and function while also extending the basic mapping results to a number of additional mammalian species. In each case, the maps revealed several surprising features, including a dominance of tactile (cutaneous inputs), robust short latency responses from the sensory periphery, and a fractured patchy somatotopic organization of receptive fields. This paper summarizes the major results of these micromapping experiments and reconsiders their implications for cerebellar function in light of more recent experimental data. The paper also explores the relationship between these fundamental discoveries and Wally Welker's theory-neutral approach to experimental science.
© 2011 New York Academy of Sciences.