Imaging and characterisation of the surface of live cells

Curr Opin Chem Biol. 2011 Oct;15(5):696-703. doi: 10.1016/j.cbpa.2011.04.001. Epub 2011 Apr 30.

Abstract

Determining the organisation of key molecules on the surface of live cells in two dimensions and how this changes during biological processes, such as signaling, is a major challenge in cell biology and requires methods with nanoscale resolution. Recent advances in fluorescence imaging both at the diffraction limit tracking single molecules and exploiting super resolution imaging have now reached a stage where they can provide fundamentally new insights. Complementary developments in scanning ion conductance microscopy also allow the cell surface to be imaged with nanoscale resolution. The challenge now is to combine the information obtained using these different methods and on different cells to obtain a coherent view of the cell surface. In the future this needs to be driven by interdisciplinary research between physical scientists and biologists.

Publication types

  • Review

MeSH terms

  • Bioluminescence Resonance Energy Transfer Techniques
  • Cell Membrane / chemistry
  • Cell Membrane / metabolism
  • Cell Membrane / ultrastructure*
  • Fluorescence
  • Fluorescence Resonance Energy Transfer
  • Fluorescent Dyes / analysis
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Microscopy, Atomic Force
  • Microscopy, Fluorescence / instrumentation
  • Microscopy, Fluorescence / methods*
  • Molecular Imaging / instrumentation
  • Molecular Imaging / methods*
  • Signal Transduction
  • Spectrometry, Mass, Secondary Ion

Substances

  • Fluorescent Dyes