Ultrasound-targeted microbubbles (MBs) offer new opportunities to enhance the capabilities of diagnostic ultrasound (US) imaging to specific pathological tissue. Herein, we report on the design and development of a novel prototype of US contrast agent based on polymeric MBs targeted to prostate-specific membrane antigen (PSMA) for use in the diagnosis of prostate cancer (PCa). First, a set of air-filled MBs by a variety of biocompatible polymers were prepared and characterized in terms of morphology and echogenic properties after exposure to US. MBs derived from poly(D,L-lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG) copolymer resulted as the most effective in terms of reflectivity. Such polymer was therefore preconjugated with a urea-based PSMA inhibitor molecular probe (DCL), and the obtained MBs were investigated in vitro for their targeting efficacy toward PSMA positive PCa (LNCaP) cells. Fluorescence microscopy proved a specific and efficient adhesion of targeted MBs to LNCaP cells. To our knowledge, this work reports the first model of polymeric MBs appropriately engineered to target PSMA, which might be further optimized and used for PCa diagnosis and potential carriers for selective drug delivery.