Background: In malaria endemic areas, most people are simultaneously infected with different parasite clones. Detection of individual clones is hampered when their densities fluctuate around the detection limit and, in case of P. falciparum, by sequestration during part of their life cycle. This has important implications for measures of levels of infection or for the outcome of clinical trials. This study aimed at measuring the detectability of individual P. falciparum and P. vivax parasite clones in consecutive samples of the same patient and at investigating the impact of sampling strategies on basic epidemiological measures such as multiplicity of infection (MOI).
Methods: Samples were obtained in a repeated cross-sectional field survey in 1 to 4.5 years old children from Papua New Guinea, who were followed up in 2-monthly intervals over 16 months. At each follow-up visit, two consecutive blood samples were collected from each child at intervals of 24 hours. Samples were genotyped for the polymorphic markers msp2 for P. falciparum and msp1F3 and MS16 for P. vivax. Observed prevalence and mean MOI estimated from single samples per host were compared to combined data from sampling twice within 24 h.
Findings and conclusion: Estimated detectability was high in our data set (0.79 [95% CI 0.76-0.82] for P. falciparum and, depending on the marker, 0.61 [0.58-0.63] or 0.73 [0.71-0.75] for P. vivax). When genotyping data from sequential samples, collected 24 hours apart, were combined, the increase in measured prevalence was moderate, 6 to 9% of all infections were missed on a single day. The effect on observed MOI was more pronounced, 18 to 31% of all individual clones were not detected in a single bleed. Repeated sampling revealed little difference between detectability of P. falciparum and P. vivax.