Background: We hypothesize that left-sided low-level vagus nerve stimulation (LL-VNS) can suppress sympathetic outflow and reduce atrial tachyarrhythmias in ambulatory dogs.
Methods and results: We implanted a neurostimulator in 12 dogs to stimulate the left cervical vagus nerve and a radiotransmitter for continuous recording of left stellate ganglion nerve activity, vagal nerve activities, and ECGs. Group 1 dogs (N=6) underwent 1 week of continuous LL-VNS. Group 2 dogs (N=6) underwent intermittent rapid atrial pacing followed by active or sham LL-VNS on alternate weeks. Integrated stellate ganglion nerve activity was significantly reduced during LL-VNS (7.8 mV/s; 95% confidence interval [CI] 6.94 to 8.66 versus 9.4 mV/s [95% CI, 8.5 to 10.3] at baseline; P=0.033) in group 1. The reduction was most apparent at 8 am, along with a significantly reduced heart rate (P=0.008). Left-sided low-level vagus nerve stimulation did not change vagal nerve activity. The density of tyrosine hydroxylase-positive nerves in the left stellate ganglion 1 week after cessation of LL-VNS were 99 684 μm(2)/mm(2) (95% CI, 28 850 to 170 517) in LL-VNS dogs and 186 561 μm(2)/mm(2) (95% CI, 154 956 to 218 166; P=0.008) in normal dogs. In group 2, the frequencies of paroxysmal atrial fibrillation and tachycardia during active LL-VNS were 1.4/d (95% CI, 0.5 to 5.1) and 8.0/d (95% CI, 5.3 to 12.0), respectively, significantly lower than during sham stimulation (9.2/d [95% CI, 5.3 to 13.1]; P=0.001 and 22.0/d [95% CI, 19.1 to 25.5], P<0.001, respectively).
Conclusions: Left-sided low-level vagus nerve stimulation suppresses stellate ganglion nerve activities and reduces the incidences of paroxysmal atrial tachyarrhythmias in ambulatory dogs. Significant neural remodeling of the left stellate ganglion is evident 1 week after cessation of continuous LL-VNS.