Biomechanical comparison of four double-row speed-bridging rotator cuff repair techniques with or without medial or lateral row enhancement

Knee Surg Sports Traumatol Arthrosc. 2011 Dec;19(12):2090-7. doi: 10.1007/s00167-011-1517-x. Epub 2011 May 10.

Abstract

Background: Biomechanical comparison of four different Speed-Bridge configurations with or without medial or lateral row reinforcement. Reinforcement of the knotless Speed-Bridge double-row repair technique with additional medial mattress- or lateral single-stitches was hypothesized to improve biomechanical repair stability at time zero.

Methods: Controlled laboratory study: In 36 porcine fresh-frozen shoulders, the infraspinatus tendons were dissected and shoulders were randomized to four groups: (1) Speed-Bridge technique with single tendon perforation per anchor (STP); (2) Speed-Bridge technique with double tendon perforation per anchor (DTP); (3) Speed-Bridge technique with medial mattress-stitch reinforcement (MMS); (4) Speed-Bridge technique with lateral single-stitch reinforcement (LSS). All repairs were cyclically loaded from 10-60 N up to 10-200 N (20 N stepwise increase) using a material testing device. Forces at 3 and 5 mm gap formation, mode of failure and maximum load to failure were recorded.

Results: The MMS-technique with double tendon perforation showed significantly higher ultimate tensile strength (338.9 ± 90.0 N) than DTP (228.3 ± 99.9 N), LSS (188.9 ± 62.5 N) and STP-technique (122.2 ± 33.8 N). Furthermore, the MMS-technique provided increased maximal force resistance until 3 and 5 mm gap formation (3 mm: 77.8 ± 18.6 N; 5 mm: 113.3 ± 36.1 N) compared with LSS, DTP and STP (P < 0.05 for each 3 and 5 mm gap formation). Failure mode was medial row defect by tendon sawing first, then laterally. No anchor pullout occurred.

Conclusion: Double tendon perforation per anchor and additional medial mattress stitches significantly enhance biomechanical construct stability at time zero in this ex vivo model when compared with the all-knotless Speed-Bridge rotator cuff repair.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • In Vitro Techniques
  • Materials Testing
  • Random Allocation
  • Rotator Cuff / surgery*
  • Statistics, Nonparametric
  • Suture Anchors*
  • Suture Techniques
  • Swine