Many studies have examined the association between coffee consumption and risk of cardiovascular disease, but the results remain controversial. Caffeine is one of the main biologically active compounds of coffee. The aim of this study was to investigate the potential role of caffeine on myocardial ischemia/reperfusion (I/R) injury in the rats. We administered caffeine (25 mg/kg per day) or saline in rats for 4 weeks before myocardial ischemia/reperfusion operation. Compared with the sham group, caffeine treatment decreased ischemia-associated infarct size, serum creatine kinase, and lactate dehydrogenase 3-h reperfusion after 30-min ischemia. Myocardial neutrophil infiltration (assessed by myeloperoxidase activity) was significantly decreased compared with the control group. Meanwhile, caffeine reduced the myocardial apoptosis and suppressed the activation of caspase 3 during myocardial I/R. Importantly, we observed a strong poly(ADP-ribose) polymerase (PARP) activation during myocardial I/R, and caffeine administration inhibited PARP activation and attenuated the expression of PARP-related proinflammatory mediators such as inducible nitric oxide synthetase, IL-6, and TNF-α, all of which may be correlated with downregulated nuclear factor κB activity. We concluded that caffeine protected against myocardial I/R injury by inhibiting inflammation and apoptosis.