Cell-mediated Delivery and Targeted Erosion of Vascular Endothelial Growth Factor-Crosslinked Hydrogels

Macromol Rapid Commun. 2010 Jul 15;31(14):1231-40. doi: 10.1002/marc.201000130. Epub 2010 Jul 8.

Abstract

We have previously reported a novel polymeric delivery vehicle that is assembled via interaction between heparin and the vascular endothelial growth factor (VEGF). Here, the cell-responsiveness of this hydrogel-including the delivery of VEGF in response to VEGFR-2 overexpressing PAE/KDR cells (porcine aortic endothelial cells (PAE) equipped with the transcript for the kinase insert domain receptor (KDR)), consequent erosion of the hydrogel matrix, and cellular response-are highlighted. The release of VEGF and hydrogel erosion reached 100% only in the presence of PAE/KDR. The [PEG-LMWH/VEGF] hydrogel (PEG = poly(ethylene glycol), LMWH = low molecular weight heparin) correspondingly prompted increases in VEGFR-2 phosphorylation and proliferation of PAE/KDR cells. This study proves that growth factor-crosslinked hydrogels can liberate VEGF in response to specific receptors, causing gel erosion and desired cell responses. The promise of these approaches in therapeutic applications, including targeted delivery, is suggested.