Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles

Phys Chem Chem Phys. 2011 Jul 7;13(25):11846-57. doi: 10.1039/c1cp20444k. Epub 2011 May 13.

Abstract

Internal structures, hygroscopic properties and heterogeneous reactivity of mixed CH(3)SO(3)Na/NaCl particles were investigated using a combination of computer modeling and experimental approaches. Surfactant properties of CH(3)SO(3)(-) ions and their surface accumulation in wet, deliquesced particles were assessed using molecular dynamics (MD) simulations and surface tension measurements. Internal structures of dry CH(3)SO(3)Na/NaCl particles were investigated using scanning electron microscopy (SEM) assisted with X-ray microanalysis mapping, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The combination of these techniques shows that dry CH(3)SO(3)Na/NaCl particles are composed of a NaCl core surrounded by a CH(3)SO(3)Na shell. Hygroscopic growth, deliquescence and efflorescence phase transitions of mixed CH(3)SO(3)Na/NaCl particles were determined and compared to those of pure NaCl particles. These results indicate that particles undergo a two step deliquescence transition: first at ∼69% relative humidity (RH) the CH(3)SO(3)Na shell takes up water, and then at ∼75% RH the NaCl core deliquesces. Reactive uptake coefficients for the particle-HNO(3) heterogeneous reaction were determined at different CH(3)SO(3)Na/NaCl mixing ratios and RH. The net reaction probability decreased notably with increasing CH(3)SO(3)Na and at lower RH.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Kinetics
  • Mesylates / chemistry*
  • Molecular Dynamics Simulation
  • Nitric Acid / chemistry
  • Sodium Chloride / chemistry*
  • Surface Tension

Substances

  • Mesylates
  • methanesulfonic acid
  • Nitric Acid
  • Sodium Chloride