Identification and structural characterization of alpha 1-adrenergic receptor subtypes

Mol Pharmacol. 1990 Apr;37(4):526-34.

Abstract

Rat liver and brain membrane alpha 1-adrenergic receptors were purified greater than 500-fold by successive chromatographic steps using heparin-agarose, an affinity matrix constructed by coupling a novel derivative of the alpha 1-selective antagonist prazosin to Affigel-102 and wheat germ agglutinin-agarose. Several lines of evidence were obtained for the existence in brain of an alpha 1-adrenergic receptor subtype that is structurally distinct from that previously characterized in liver and other tissues using photoaffinity labeling, protein purification, and DNA cloning techniques. The alpha 1-selective ligand chlorethylclonidine (CEC) (an alkylating agent) irreversibly inactivates 100% of [3H]prazosin binding sites in partially purified preparations of rat liver. Under identical conditions, only 50% of brain receptors are irreversibly inactivated. Computer modeling of data obtained from the competition by the alpha antagonists WB4101 and phentolamine for [3H]prazosin binding to partially purified preparations of rat liver is best fit by assuming a single class of low affinity sites for both ligands. However, analysis of partially purified brain preparations indicates the presence of two binding sites with different affinities for these antagonists. Additionally, prior alkylation of brain receptors with CEC results in the loss of low affinity phentolamine and WB4101 binding sites. The CEC-insensitive site in brain, which displays high affinity for phentolamine and WB4101, is resistant to photoaffinity labeling by [125I]azidoprazosin. This is not due to a markedly lower affinity of the CEC-insensitive sites for the photoaffinity label, because competition studies with [127I]azidoprazosin revealed a single class of high affinity sites in partially purified brain samples. Photoaffinity labeling of partially purified liver and brain samples not treated with CEC results in the specific labeling of a single protein of Mr 80,000. No specifically labeled protein is observed for partially purified brain samples that had previously been incubated with CEC. Treatment of photoaffinity-labeled liver and brain receptors with N-glycanase to cleave N-linked oligosaccharides results in a single Mr 55,000 protein. Taken together, these data provide evidence for the existence of a single receptor subtype (alpha 1b) in rat liver and for two subtypes (alpha 1a and alpha 1b) in rat brain. Furthermore, the insensitivity of the alpha 1a subtype to CEC and the resistance of the alpha 1a subtype to covalent labeling by an alpha 1b-selective photoaffinity probe suggest that the primary structures of the two receptor subtypes differ, such that an amino acid(s) in the alpha 1b subtype that incorporates CEC and the photoaffinity label is lacking in the alpha 1a subtype.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Affinity Labels
  • Animals
  • Binding, Competitive
  • Brain / metabolism*
  • Brain Chemistry
  • Female
  • Liver / analysis*
  • Liver / metabolism
  • Prazosin / metabolism
  • Rats
  • Rats, Inbred Strains
  • Receptors, Adrenergic, alpha / analysis*
  • Receptors, Adrenergic, alpha / isolation & purification
  • Receptors, Adrenergic, alpha / metabolism

Substances

  • Affinity Labels
  • Receptors, Adrenergic, alpha
  • Prazosin