Core-level X-ray photoemission and near-edge X-ray absorption fine structure spectra of 5-methylcytosine, 5-fluorocytosine, and isocytosine are presented and discussed with the aid of high-level ab initio calculations. The effects of the methylation, halogenation, and isomerization on the relative stabilities of cytosine tautomers are clearly identified spectroscopically. The hydroxy-oxo tautomeric forms of these molecules have been identified, and their quantitative populations at the experimental temperature are calculated and compared with the experimental results and with previous calculations. The calculated values of Gibbs free energy and Boltzmann population ratios are in good agreement with the experimental results characterizing tautomer equilibrium.