Diindolylmethane (DIM), an isothiocyanate found in cruciferous vegetables, has been shown to have cancer chemopreventive effects. A series of synthetic C-substituted DIMs (C-DIMs) analogs was developed, including DIM-C-pPhtBu and DIM-C-pPhC6H5, which exhibited better inhibitory activity in cancer cells than DIM. This study examined the effects of C-DIMs on the growth of human oral cancer cells. DIM-C-pPhtBu and DIM-C-pPhC6H5 decreased the number of viable KB cells and induced caspase-dependent apoptosis. The apoptotic cell death was accompanied by a change in Bax/Bcl-2 ratio and damage to mitochondrial membrane potential through the induction of death receptor 5 and the cleavage of Bid and caspase 8. Studies on the mechanism of action showed that the apoptotic cell death induced by DIM-C-pPhtBu and DIM-C-pPhC6H5 was mediated by endoplasmic reticulum stress. In addition, C-DIMs inhibited cell proliferation and induced PARP cleavage through death receptor 5 and CHOP in HEp-2 and HN22 cells. This provides the first evidence that synthetic C-DIMs originating from cruciferous vegetables induce apoptosis in human oral cancer cells through the endoplasmic reticulum stress pathway.