In this paper we have investigated the behaviour of newly synthesised mono-palmitoyl- and dipalmitoyl-phosphatidylethanolamine probes (abbreviated as mPE and dPE, respectively) labelled in the polar headgroup region by either the FL-BODIPY or the 564/570-BODIPY fluorophore and solubilised in lipid systems that exhibit different curvatures. Because of the bulky BODIPY-groups, the monoacyl-form derivatives have a conic-like shape, whereas that for the diacyl derivatives is rather cylindrical. A careful analysis of time-resolved resonance energy transfer experiments by means of analytical models as well as Monte Carlo simulations shows that the mPE derivatives have a comparable affinity to highly curved bilayer regions (torroidal pores formed by magainin-2 in lipid bilayers, or the rims of discoid bicelles) and to planar bilayer regions (i.e. the flat region of lipid bilayers and bicelles). Furthermore, the monoacyl-probes are as compared to the diacyl-probes effectively closer to each other in a lipid bilayer, while none of these probes seems to be randomly distributed. Self-aggregation is most efficiently induced by the larger aromatic 564/570-BODIPY chromophore, but it is suppressed when using the diacyl instead of the monoacyl-form, and/or by attaching BODIPY-groups to the acyl-chain.
This journal is © the Owner Societies 2011