Background: Hematopoietic stem cell transplantation is commonly used to treat several oncohematologic diseases. The autologous hematopoietic progenitor cells collected through apheresis (HPC-A) must be cryopreserved and stored before use in vivo. Cell processing that precedes cryopreservation of HPC-A includes volume reduction aimed at reducing the amount of dimethyl sulfoxide used, as well as storage space.
Study design and methods: The aim of our study was to assess the effectiveness of volume reduction performed with an automated closed system, namely, the Sepax S100 cell separation device (Biosafe SA). A total of 165 procedures were carried out on concentrates collected from 104 adult and pediatric patients. As a control group, 30 HPC-A units processed according to the standard method (i.e., centrifugation at a speed of 850 × g for 10 minutes, followed by manual plasma reduction) were evaluated.
Results: The volume reduction obtained was 59% (range, 20.54%-84.21%; standard deviation [SD], ± 12.19%), going from 236 mL (range, 100-443 mL; SD, ± 80.41 mL) to 97 mL (range, 33.00-263.00 mL; SD, ± 47.41 mL); recovery of nucleated cells was 90% (range, 64.84%-105.93%; SD, ± 8.76%), while that of CD34+ cells was 91% (range, 59.30%-119.37%; SD, ± 13.30%). These values did not differ from those obtained using the standard method. Automated processing required 20 minutes versus 40 minutes of manual processing.
Discussion: Our data demonstrate that volume reduction carried out with the Sepax S100 automated system was particularly effective; cell recovery was excellent and the time spent was short. Moreover, the closed system allows cell processing to be carried out in a contamination-controlled environment, in accordance with good manufacturing practice guidelines.
© 2011 American Association of Blood Banks.