BUPM95 is a Bacillus thuringiensis subsp. kurstaki strain producing the Vip3Aa16 toxin with an interesting insecticidal activity against the Lepidopteran larvae Ephestia kuehniella. Study of different steps in the mode of action of this Vegetative Insecticidal Protein on the Mediterranean flour moth (E. kuehniella) was carried out in the aim to investigate the origin of the higher susceptibility of this insect to Vip3Aa16 toxin compared to that of the Egyptian cotton leaf worm Spodoptera littoralis. Using E. kuehniella gut juice, protoxin proteolysis generated a major band corresponding to the active toxin and another band of about 22kDa, whereas the activation of Vip3Aa16 by S. littoralis gut juice proteases generated less amount of the 62kDa active form and three other proteolysis products. As demonstrated by zymogram analysis, the difference in proteolysis products was due to the variability of proteases in the two gut juices larvae. The study of the interaction of E. kuehniella BBMV with biotinylated Vip3Aa16 showed that this toxin bound to a putative receptor of 65kDa compared to the 55 and 100kDa receptors recognized in S. littoralis BBMV. The histopathological observations demonstrated similar damage caused by the toxin in the two larvae midguts. These results demonstrate that the step of activation, mainly, is at the origin of the difference of susceptibility of these two larvae towards B. thuringiensis Vip3Aa16 toxin.
Copyright © 2011 Elsevier Inc. All rights reserved.